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ENGINEERING SURVEYING 1 
 
 

EARTHWORKS and VOLUMES 
 
 
 

Earthworks are required for many types of construction such as roads and railways, dams, tunnels, buildings, 
swimming pools and tanks.  For many of these construction projects, the surveyor is required to set out the 
extent of excavation and calculate quantities of material to be exported or imported.  Many volumes encountered 
in engineering surveying appear at first glance to be rather complex in shape but usually they can be split into 
basic geometric shapes (or solids) – prisms, wedges and pyramids together with truncated prisms.  The volume 
of complex figures can then be computed as a sum of volumes of constituent parts.  In addition to these basic 
geometric shapes, many volumes encountered in engineering can be represented as solids known as prismoids, a 
particular type of solid having a relatively simple volume formula.  Descriptions and formulae of basic 
geometrical figures encountered in engineering surveying problems are set out below. 
 
 
1. BASIC GEOMETRICAL FIGURES 
 
1.1 Prism 
 

This is a solid whose ends are parallel, polygonal and equal 
in size and shape and whose side faces are parallelograms. 
If the end faces are perpendicular to the axis of the prism 
then it is known as a right prism and the side faces will be
rectangles. 

L
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Volume = end area  perpendicular distance  

or 

V A L  (1.1) 

 
 
 Figure 1.1 
 
 
1.2 Wedge 
 
 

This is a solid of five sides; a rectangular base, two 
rhomboidal sides meeting in an edge and two triangular side 
faces.  The triangular side faces are not necessarily parallel 
or perpendicular to the rectangular base.  The edges a, b and
c are paralle

w

L

b

c
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l. 

 

Volume = sum of parallel edges  width of base

1
  perpendicular height
6




 

or 

 
6
L

V w a b c   (1.2) 

 
 Figure 1.2 
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1.3 Pyramid 
 
 

A solid figure having a polygonal base, the sides of which form the 
bases of triangular surfaces meeting at a common vertex. 

L

A

 

1
Volume =  base area  perpendicular height

3
  

or 

3
A

V  L  (1.3) 

 
 
 Figure 1.3 
 
 
1.4 Truncated Right Triangular Prism 
 
A Truncated Right Triangular Prism is a prism where the end faces ABC (the triangular base) and EHK are not 
parallel.  The side faces ABEH, BCKE and CAHK are perpendicular to the base ABC. 

 
Let A be the area of the base ABC (and DEF, a section 
parallel to the base), , ,  be the heights AH, BE, CK, 

and a be the perpendicular height of triangle DEF.  The 
volume of the Truncated Right Triangular Prism is the sum 
of the volume of the prism ABCDEF plus the volume of the 
pyramid EDHKF. 
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 Figure 1.4 giving 
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1.5 Truncated Right Rectangular Prism 
 
A Truncated Right Rectangular Prism is a prism where the end faces ABCD (the rectangular base) and EFGH are 
not parallel.  The side faces are perpendicular to the base. 
 
 

In a similar manner to the Truncated Right Triangular prism, 
the volume of the Truncated Right Rectangular Prism is given 
by 
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 Figure 1.5 
 
 
1.6 Prismoid 
 
A prismoid is a solid figure having parallel end faces, not necessarily similar or having the same number of 
sides, and having side faces which are plane figures (parallelograms, rectangles, trapezia, triangles etc) extending 
the full length of the solid. 
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Figure 1.6 
 
A prismoid is shown in Figure 1.6.  L is the perpendicular distance between end faces, 1A , 2A  the areas of the 

end faces and mA  is the area of the mid-section.  Note that the mid-section is parallel with the end faces but its 

area is not necessarily the mean of 1A  and 2A .  The volume is given by the Prismoidal Formula 

  1 4
6 m
L

V A A A   2  (1.6) 

A proof of the Prismoidal Formula (1.6) is given below. 
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1.7 Newton's Proof of the Prismoid Formula 
 
A prismoid can be broken into prisms, wedges and pyramids, and the usual proofs of the Prismoidal Formula use 
this property.  The Prismoidal Formula is a computational formula dating from antiquity and appears on one of 
the oldest documents in existence, a papyrus roll (about 544 centimetres long and 8 centimetres wide), written in 
Egypt around 1890BC.  This papyrus roll commonly known as the Moscow Papyrus (or Golenischev Papyrus 
after the Russian who purchased it in Egypt in 1893 and brought it to Moscow, where it still resides), contains 25 
mathematical problems with solutions.  The 14th problem asks for the volume of a truncated pyramid (frustum) 
and its stated solution can be expressed in the common form we know as the Prismoidal Formula. 
 
The proof of the Prismoidal Formula set out below, was enunciated by Sir Isaac Newton (1642-1726) and can be 
found in Plane and Geodetic Surveying, 5th edn, by D. Clark, Constable & Co., London, 1957.  It is interesting 
to note that that Newton held the view (outlandish at the time) that he and others were just re-discovering the 
knowledge of the ancient Egyptians.  Interesting historical information regarding the Prismoidal Formula 
(Moscow Papyrus) can be found at http://www.mathpages.com/home/kmath189/kmath189.html.  For those 
interested in the history of mathematics, the 1st volume of The World of Mathematics by James R. Newman 
(Simon & Schuster, New York, 1956) has a wonderful description of the Rhind Papyrus; another ancient 
Egyptian scroll describing fundamental mathematical principles. 
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Figure 1.7 
 
A prismoid is shown in Figure 1.7.  Let PQRS represent the section of area mA  midway between the end faces 

ABCD and EFG and parallel to them.  Take any point O in the plane of the mid-section and join O to the vertices 
of both end polygons.  The prismoid is thus divided into a number of pyramids, each having its apex at O, and 
the bases of these pyramids form the end and side faces of the prismoid.  Denoting the end areas by 1A  and 2A  
and the length of the prismoid by L, the volume of the pyramids based on the end faces are, respectively 

 1
13 2 6

A L L
A     and   2

23 2 6
A L L

A   

To express the volume of the pyramids based on the side faces of the prismoid, consider, say, pyramid OADGE, 
and let the perpendicular distance of O from SP be h, then the volume of the pyramid OADGE is 

  1 1
 area( ) 2  

3 3 3
L

ADGE h PS L h OPS       

where  means 2 OPS 2 area of triangle OPS . 
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In the same manner, the volume of pyramid 2  
3
L

OCDGF ORS   and so on for the others, so that the 

volume of the prismoid is given by 
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2. VOLUME COMPUTATION 
 
2.1 Volume by End Area Formula 
 
For many volume computations, the solid, whose faces are planes extending the whole length of the solid, has 
end faces, which are vertical planes.  Such figures arise in earthworks for roads where the end faces are vertical 
sections at regular chainages along the centre line.  Figure 2.1 shows such a solid. 
 
 
 

A1

Am A2

L-
2
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Figure 2.1 
 
If 1A  and 2A  are the areas of two cross-sections distance L apart, then the volume between the two is given by 
the End Area Formula 

 1 2

2
A A

V
  L  (2.1) 

For n sections, each a distance L apart then the total volume is given by 

 1
2 3 12

n
n

A A
V A A A 

      L  (2.2) 

The End Area Formula is valid if the mid-section (unknown) is the mean of the end areas (known).  This will be 
true if the solid is composed of prisms and wedges, but is not so if the solid contains any pyramids. 
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To explain this consider the volume of a pyramid, 
3
L

V  A , see equation (1.3). 

Using the End Area Formula the volume of a pyramid is 1 2
12 2

A A L
V L

     A  since . 2 0A 

The error in the volume is 1 12 3 6error
L L L

V A A   1A , ie, half the volume of the pyramid.  Hence, the End Area 

Formula will overestimate the volume of a prismoid by half the volume of any pyramids contained within the 
prismoid. 
 
 
2.2 Comparison of End Area and Prismoidal Formulae 
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Figure 2.2 
 
Figure 2.2 shows a prismoid where the end faces are vertical planes and the side faces are batter planes of slope 
1 in 2 (1 vertical to 2 horizontal).  The base of the prismoid is a horizontal plane and the top is a sloping plane.  
The top and bottom of the vertical cross sections are level lines. 
 

The areas of the cross sections are: 2
1

60 20
10 400 m

2
A

     ,  and   2750 mmA  2
2 1200 mA 

 
Volume by End Area Formula: 

 

1 2

3

2
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2

48000 m
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V L

    
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Volume by Prismoidal Formula 
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The volume obtained by the Prismoidal Formula, (46000 m3) is correct and the volume obtained by the End Area 
Formula is greater by 2000 m3  .  This overestimation is the general rule when computing volumes using 

the End Area Formula.  If the section areas are not changing rapidly (ie, 


2

4%

1A A ) then the error is usually 
negligible and is ignored in practice. 
 
 
2.3 Prismoidal Correction (Prismoidal Excess) 
 
If the volume computed by the End Area Formula is considered to be in excess of the true volume by a 
significant amount, the true volume can be obtained by applying the Prismoidal Correction (P.C.) 

     3
1 2 1 2. .  m

12
L

P C w w c c    (2.3) 

where  and  are the horizontal components of the natural surface distances between batter slopes 

and  and  are the centre line depths of cut (or heights of fill) for the cross sections. 
1w 2w

1c 2c
 
Example: 
 
For the prismoid shown in Figure 2.2, the volume by the End Area Formula was 48000 m3.  With , 

, ,  and L = 60.  The Prismoidal Correction is 
1 60w 

2 100w  1 10c  2 20c 

     360
. . 60 100 10 20  = 2000 m

12
P C     

The true volume is then 

  3 348000 m 2000 m 46000 mV    3

This is the volume obtained by the Prismoidal Formula. 
 
In practice, this formula (correction) is rarely used and the field procedure is tailored to accord with the End 
Area method of volume computation. 
 
 
3. PLANES and BATTER SLOPES 
 
3.1 Equation of a Plane 
 
 

STRIKE
g
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p

f

n

 
 

Figure 3.1 
 
In Figure 3.1, ABCD is a portion of an inclined plane.  A' and B' are vertical projections of A and B onto a 
horizontal X-Y plane (A'B'CD) and the line CD is the intersection of the inclined and horizontal planes.  The XYZ 
Cartesian coordinate origin is at A' with the Z-axis vertical. 
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The equation of the inclined plane can be expressed as 

 lX mY nZ p    (3.1) 

where 

 

cos

cos

cos

l

m

n









 (3.2) 

are known as direction cosines and p is the perpendicular distance from the coordinate origin to the plane.  In the 
diagram, n is the normal to the plane and is shown as the thick dotted line, which lies in the plane AA'D. 
 
This equation is known as the normal equation of a plane; ie the plane is defined by fixing the direction of the 
normal n to the plane by means of the three angles  ,   and  .  These are the angles between the X, Y and Z 

coordinate axis respectively and the normal. 
 
The direction cosines l, m and n have the property 

 2 2 2 1l m n    (3.3) 

 
 
3.2 Direction of Strike and Maximum Dip on an Inclined Plane 
 
In Figure 3.1, the line AB is a level line on the inclined plane and is known as the strike line.  CD, which is 
parallel to AB, is also a strike line as is any other parallel line in the inclined plane.  The line perpendicular to the 
strike line is the direction of maximum dip.  In Figure 1 the Y'-axis is the direction of strike and the X'-axis is the 
direction of maximum dip. 
 
The direction of strike can be determined from the normal equation of the plane by considering a clockwise 
rotation of the X-Y axes about the Z-axis by an angle  .  If the Y-axis is the direction of north then   will be the 

bearing of the strike line of the inclined plane.  A clockwise rotation about the Z-axis can be represented by the 
matrix equation 

 
 
 

.

f

Y

Y'
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X'
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Z

 

' cos sin 0

' sin cos 0

' 0 0 1

X X

Y Y

Z Z

 
 

     
          
          

 (3.4) 

 
 

 
 
Referring to Figure 3.1, when the Y'-axis is the direction of strike, the Y' coordinate of any point along the 
normal to the inclined plane will be zero, ie, the normal will lie in the Z-X' plane.  Hence, from equation (3.4) 

 ' sin cosY X Y 0     (3.5) 

Now the X and Y coordinates of the point where the normal pierces the inclined plane are cosp   and cosp   

respectively, giving 

 
cos

tan
cos

p
p




m
l

 
   (3.6) 

Note that the "whole circle" bearing     must be determined by resolving the correct quadrant 

for the angle 

0 360 

  given by equation (3.6). 
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3.2 Intersecting Batter Planes 
 
In Figure 3.2, HBAJ and ABKL are batter planes of slopes 1 in 1s  and 1 in 2s  which intersect along the line AB.  
For volume computation and setting-out purposes, it is often required to determine the direction and slope of the 
intersection line AB. 
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Figure 3.2  Batter Planes intersecting at angle   

 
The slope of the batter plane ABKL is 1 in 1s  shown diagrammatically by the right-angle triangle ADE.  

Similarly, the slope of the batter plane HBAJ is 1 in 2s  shown diagrammatically by the right-angle triangle AFG.  
The angle between the lines AJ and AL (or BH and BK) is  .  This is also the angle between the lines BH and 

BK and CG and CE.  The angle between the triangular plane BCA and the vertical plane FBCG is  .  This is the 
direction of the line of intersection of the two inclined batter planes. 
 
Given 1s  and 2s  for the two batter planes and the angle   between the strike lines (or level lines) of the two 

planes, the slope and direction of the line of intersection can be found in the following manner. 
 
In right angle triangle AGC 

 2
3 sin

s
s


  (3.7) 

In right angle triangle ACE 

     
1

3 sin 180 sin
s

s 1s
  

 
  

 (3.8) 

Equating (3.7) and (3.8) gives 

 
 

 
1 2

2

sin sin

sin cos sin cos

s s

s

  
   

 
 

 

Re-arranging gives 

  1 2 2sin cos sin coss s s      (3.9) 
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Dividing both sides of equation (3.9) by sin  and re-arranging gives 

 2

1 2

sin
tan

cos
s

s s






 (3.10) 

 
The slope of the line of intersection is 1 in 3s  and having calculated   from equation (3.10), 3s  can be obtained 

from equation (3.7).  The angle of elevation   of the line of intersection is given by 

 
3 2

1 sin
tan

s s
    (3.11) 

Note, that when , see Figure 3.3 90   2

1
tan

s
s

   and 2 2
3 1 2s s s  .  Furthermore, when  and 90  

1 2s s  s  then  and 45  
3 2s s . 
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Figure 3.3  Batter Planes intersecting at right angles 
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3.3 Convergent Grades 
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Figure 3.4  Convergent grades 
 
 
In Figure 3.4 AC is a vertical line, z is the vertical height difference between A and C and the rising grades 1 in P 
(1 vertical to P horizontal) and 1 in S intersect at D.  The grades 1 in R (falling grade) and 1 in S (rising grade) 
intersect at B.  CBD is a straight line, B is a horizontal distance 1x  from AC and D is a horizontal distance 2x  

from AC. 
 
Given the grades 1 in S (rising from C) and 1 in R (falling from A) intersecting at B and the vertical height 
difference z between A and C the horizontal distance 1x  can be determined as follows. 

 
1

1 a

S x
  (3.12) 

 
1

1 b

R x
  (3.13) 

adding equations (3.12) and (3.13) noting that z a b   gives 

 
1 1

1 1 a b z

S R x x x1

     

re-arranging gives 
 

1

z R S
x

R S





 (3.14) 

Given the grades 1 in S (rising from C) and 1 in P (rising from A) intersecting at D and the vertical height 
difference z between A and C the horizontal distance 2x  can be determined as follows. 

 
2 2

1 z c z c

S x x x2


    (3.15) 

 
2

1 c

P x
  (3.16) 

Substituting (3.16) into (3.15) gives 
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2

1 1z

S x P
   

re-arranging gives 
 

2

z P S
x

P S





 (3.17) 

 
Example:  In the diagram below, calculate the horizontal distances 1x  and 2x  
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1
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 
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3.4 Natural Surface Plane, Intersecting Batter Planes and Convergent Grades Example 
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Figure 3.5 
 
Figure 3.5 is a plan view of a proposed rectangular excavation on sloping ground.  Soil is to be excavated to a 
rectangular level plane ABCD having a reduced level (RL) of 100 m.  The excavation is to have batter planes of 
1 in s (1 vertical to s horizontal) where .  The dotted line A'B'C'D' is the extent of the excavation, i.e., 
where the batter planes intersect the natural surface.  The rectangle ABCD (50 m by 30 m) has been marked on 
the ground and RL's of the corners are shown. 

3s 

 
It is required to calculate the positions of the limits of excavation, i.e., the locations of A', B', C' and D'. 
 
Method of solution: (i) Assuming that the natural surface is a plane, use the RL's of A, B and C to compute 

the normal equation of the natural surface plane.  Check that the computed RL of D 
(from the equation of the plane) is close to the measured natural surface RL. 

 
 (ii) Calculate the direction and slope (1 in 3s ) of the lines of intersection of the batter 

planes, i.e., the direction and slope of the batter plane intersection lines AA', BB', 
CC' and DD'. 

 
 (iii) Calculate the RL's of points on the natural surface plane near A', B', C' and D' in the 

direction of the lines of intersection of the batter planes.  These points are denoted 

1 1 1, ,A B C  and .  Use these RL's and the RL's of A, B, C and D to determine 

natural surface grades (1 in n) along the lines of intersection. 
1D

 
 (iv) Use the formula for convergent grades to calculate the horizontal distances AA', BB', 

CC' and DD'. 
 

© 2005, R.E. Deakin 13 



Geospatial Science  RMIT 

Solution 
 
Part (i) Assign X,Y coordinates of 100.0 m and 100.0 m to A and treat RL's as Z-coordinates 
 

Point X Y Z 
A 100.000 100.000 100.780 
B 100.000 150.000 101.820 
C 130.000 150.000 102.330 
D 130.000 100.000 101.310 

 

 Calculate the components of two vectors ABa


 and BCb


.  These two vectors define the natural 
surface plane. 

 

     

    
0 50 1.040

30 0 0.510

A B A B A B

C B C B C B

X X Y Y Z Z

X X Y Y Z Z

     

  

     

  

a i j

i j k

b i j

i j k



k

k
 

 Calculate the normal to the plane using the vector cross product ˆsin  a b a b p p .  The 

perpendicular vector p will be in the direction of the "upward" normal to the natural surface plane. 

 

     1 2 3 2 3 3 2 1 3 3 1 1 2 2 1

1 2 3

0 50 1.040 25.500 31.200 1500.000

30 0 0.510

a a a a b a b a b a b a b a b

b b b

  

  

        

      

i j k

p a b i j k

i j k

i j k

 

 The magnitude 1500.541132p  and the unit vector ˆ 0.016994 0.020792 0.999639   p i j k .  The 

components of the unit vector  are the direction cosines l, m and n. p̂

 

0.016994

0.020792

0.999639

l

m

n

 
 


 

 The normal equation of the natural surface plane is 

 lX mY nZ p    

 where p is the perpendicular distance from the origin to the plane.  The value of p may be determined 
by substituting the coordinates of A into the equation of the plane 

  96.965019A A Ap lX mY nZ   

 The computed RL (from the natural surface plane) is given by re-arranging the equation for the plane 

 
 

101.290 mD D
D

p lX mY
Z

n

 
   

 This value agrees closely (0.020 m) with the observed RL of D. 
 
Part (ii) The batter plane slopes are 1 in s where s = 3.  Since the excavation is rectangular, the batter planes 

intersect at right angles and their grades are all the same, hence the batter intersection lines AA', BB', 
CC' and DD' will be at angles of 45º to the rectangular plane ABCD with grades of 1 in 3s  where 

 3 2 3 2s s   
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Part (iii) Calculate the RL's of points near A', B', C' and D' in the directions of the batter intersection lines.  Call 
these points 1 1 1 1, ,  and A B C D  ands assign coordinates 5 m  from the corners A, B, C and D to these 

points and calculate the RL's from the normal equation of the plane.  This will mean that 1 1 1, ,A B C  

and  will be located at bearings 225º, 315º, 45º and 135º respectively at distances 1D 50 7.071 m  

from the corners A, B, C and D. 
 

 Normal equation of plane lX mY nZ p    

 

0.016994

0.020792

0.999639

96.965019

l

m

n

p

 
 



 

 
Point X Y Z (computed) 

1A  95.000 95.000 100.591 

1B  95.000 155.000 101.839 

1C  135.000 155.000 102.519 

1D  135.000 95.000 101.271 

 
Part (iv) Calculate the natural surface grades (1 in n) in the direction of the batter intersection lines using the 

computed Z-values at 1 1 1 1, ,  and A B C D  and the observed RL's of A, B, C and D. 

 
Line dist Z  grade 1 in n 

A - 1A  7.071 100.591 100.780 0.811    n = -8.719 

B -  1B 7.071 101.839 101.820 0.019   372.216 

C -  1C 7.071 102.519 102.330 0.189   37.413 

D -  1D 7.071 101.271 101.310 0.039    -181.308 

 
 Calculate the horizontal distances d from A, B, C and D to A', B', C' and D' respectively using the 

formula for convergent grades.  Note that falling grades are shown with a negative sign. 
 

Line grade 1 in n grade 1 in 3s s z (depth of cut) 
 3

3

z n s
d

n s





 

A - A' -8.719 3 2 4.243  0.780 2.226 

B - B' 372.216 3 2 4.243  1.820 7.811 

C - C' 37.413 3 2 4.243  2.330 11.151 

D - D' -181.308 3 2 4.243  1.310 5.431 

 
 
 
 
 
 
 
 
 
 


